Madhyamik Question Paper 2018 With Solutions

Question 1: Choose the correct option in each case from the following questions: $[1 \times 6 = 6]$

- (i) Interest on Rs. a at the simple interest 10% per annum for b months is:
- (a) Rs. ab / 100
- (b) Rs. ab / 120
- (c) Rs. ab / 1200 (d) Rs. ab / 10

Answer: (b)

R = 10%

T = b months = b / 12 years

SI = PTR / 100

= a * b * (10) / 100 * 12

= ab / 120

- (ii) If $x \propto y$ then
- (a) $x^2 \propto y^2$ (b) $x^3 \propto y^2$
- (c) $\mathbf{x} \propto \mathbf{y}^2$
- (d) $x^2 \propto y^2$

Answer: (a)

 $\mathbf{x} \propto \mathbf{y}$

x = ky

 $\mathbf{x}^2 = \mathbf{k}^2 \mathbf{y}^2$

 $x^2 \, \propto \, \boldsymbol{y}^2$

- (iii) If $\angle A = 100^{\circ}$ of a cyclic quadrilateral ABCD, then the value of ∠C is:
- (a) 50°
- (b) 20°
- (c) 80°
- (d) 180°

Answer: (c)

$$\angle A = 100^{\circ}$$

$$\angle A + \angle C = 180^{\circ}$$

$$\angle C = 180^{\circ} - 100$$

$$\angle C = 80^{\circ}$$

(iv) The sexagesimal value of $7\pi / 12$ is:

- (a) 115°
- (b) 150°
- (c) 135°
- (d) 105°

Answer: (d)

 $7\pi/12$

$$= (7 * 180) / 12$$

 $= 105^{\circ}$

(v) If the side of a cube is a unit and the diagonal of the cube is d unit then the relation between a and d will be.

(a)
$$\sqrt{2}a = d$$
 (b) $\sqrt{3}a = d$ (c) $a = \sqrt{3}d$

(b)
$$\sqrt{3}a = d$$

(c)
$$a = \sqrt{3}d$$

 $=\sqrt{2}d$

Answer: (b)

(vi) If the mean of the numbers 6, 7, x, 8, y, 16 is 9 then:

(a)
$$x + y = 21$$

(a)
$$x + y = 21$$
 (b) $x + y = 17$ (c) $x - y = 21$ (d) $x - y = 9$

(c)
$$x - y = 21$$

(d)
$$x - y = 9$$

Answer: (b)

x + y = 17

Question 2: Fill up the blanks (any five):

 $[1 \times 5 = 5]$

- (i) If the simple interest of a principal for n years at r\% p.a. be Rs. pnr / 25, then the principal will be Rs _____. [4P]
- (ii) The equation (a 2) $x^2 + 3x + 5 = 0$ will not be a quadratic equation for a = [a = 2]
- (iii) if ABCD is a cyclic parallelogram then A is . [90°]
- (iv) If $\tan 35^{\circ} \tan 55^{\circ} = \sin \theta$, then the lowest positive value of θ will be . [90°]

 $\tan 35^{\circ} \tan 55^{\circ} = \sin \theta$ $\tan 35^{\circ} \tan (90^{\circ} - 35^{\circ}) = \sin \theta$ $\tan 35^{\circ} * \cot 35^{\circ} = \sin \theta$ $1 = \sin \theta$ $\theta = 90^{\circ}$

- (v) The shape of a pencil with one end sharpened is the combination of a cylinder and a [cone]
- (vi) The measures of central tendency are Mean, Median and . [Mode]

Question 3: Write True or False (any five):

 $[1 \times 5 = 5]$

- (i) At the same rate of interest, the simple interest for 2 years is more than the compound interest on the same principal. [False]
- (ii) x^3y , x^2y^2 and xy^3 are in continued proportion. [True]
- (iii) The angle in the segment of a circle which is less than a semicircle is an obtuse angle. [True]
- (iv) Simplest value of $\sec^2 27^\circ \cot^2 63^\circ$ is 1. [**True**] $\sec^2 27^\circ \cot^2 63^\circ$ = $\sec^2 27^\circ - \cot^2 [90 - 27]$ = $\sec^2 27^\circ - \tan^2 27^\circ$ = 1
- (v) If the radius of a sphere is twice that of the 1st sphere then the volume of the sphere will be twice that of the 1st sphere. [False]

(vi)

Score	1	2	3	4	5
Number of students	3	6	4	7	5

The mode of the distribution is 3. [False]

Question 4: Answer any one question:

 $[3 \times 1 = 3]$

[i] The rate of simple interest per annum reduces from 4% to 3 (3 /4) % and for this, a person's annual income decreases by Rs. 60. Determine the principal of that person.

[ii] A and B start a business with Rs. 15,000 and Rs. 45,000, respectively. After 6 months B received Rs 3,030 as profit. What is A's profit?

Solution:

Amount invested by A = Rs. 15000

Amount invested by B = Rs. 45000

The ratio of their profits after 6 months would be

A:B

15000:45000

15:45

1:3

Profit earned by B = Rs. 3030

According to the question, it becomes,

$$3x = 3010$$

$$x = 3010 / 3$$

$$x = 1010$$

So, A's profit after 6 months would be Rs. 1010.

[iii] If 2x + [1/x] = 2, then find the value of $x/[2x^2 + x + 1]$.

$$2x + [1 / x] = 2$$

 $2x^{2} + 1 = 2x$
LHS = $x / [2x^{2} + x + 1]$
= $x / 2x^{2} + 1 + x$
= $x / 2x + x$

$$= x / 3x$$
$$= 1 / 3$$

[iv] If the roots of a quadratic equation are 2 and -3, then write the equation.

Solution:

$$a = 2, b = -3$$

 $x^{2} - (a + b) x + ab = 0$
 $x^{2} - (2 + (-3))x + (2 * -3) = 0$
 $x^{2} + x - 6 = 0$

[v] The line parallel to BC of $\triangle ABC$ meets AB and AC at P and Q respectively. If AP = 4 cm, QC = 9 cm and PB = AQ, then find the length of PB.

Solution:

Since PQ \parallel BC

By basic proportionality theorem,

$$AP / PB = AQ / QC$$

$$4/x = x/9$$

$$36 = x^2$$

$$x = 6cm$$

Length of PB is 6cm.

[vi] The radius of a circle with centre O is 5 cm. P is a point at a distance 13 cm from O. PQ and PR are two tangents to this circle. Find the area of the quadrilateral PQOR.

Solution:

PQ & PR are 2 tangents and QO & OR are 2 radii at contact point Q & R. \angle PQO = 90° [a tangent to a circle is perpendicular to the radius through the point of contact]

By Pythagoras theorem

 $PQ^2 = OP^2 - OQ^2$

 $PQ^2 = 13^2 - 5^2$

= 169 - 25

= 144

 $PQ = \sqrt{144} = 12$

PQ = 12cm

PQ = PR = 12cm [The lengths of two tangents drawn from an external point to a circle are equal]

In ΔOPQ & Δ OPR

OQ = OR (5cm) given

OP = OP (Common)

PQ = PR (12cm)

Hence, \triangle OPQ and \triangle OPR are congruent. (by SSS congruence)

Area of $\triangle OPQ = Area \triangle OPR$

Area of quadrilateral QORP = $2 \times (area of \triangle OPR)$

Area of quadrilateral QORP = $2 \times 1 / 2 \times base \times altitude$

Area of quadrilateral QORP = $OR \times PR$

Area of quadrilateral QORP = 12×5 = 60 cm^2

[vii] The two chords AB and CD of a circle are at equal distance from the centre O. If \angle AOB = 60° and CD = 6 cm, then calculate the length of the radius of the circle.

Solution:

In \triangle AOB and \triangle COD,

$$AB = CD$$

$$OA = OC = OB = OD$$

All the angles and sides should be equal.

$$AB = 6cm$$

$$\angle$$
 COD = 60°

$$AE = AB / 2$$

$$AE = 6 / 2 = 3cm$$

In $\triangle AOE$ and $\triangle BOE$,

$$OA = OB$$

$$OE = OE$$

$$AE = BE$$

By SSS congruence,

$$\Delta \mathsf{AOE} \stackrel{\boldsymbol{.}}{\cong} \Delta \mathsf{BOE}$$

$$\angle AOE = \angle BOE$$

$$\angle AOE = 30^{\circ}$$

 $\sin \theta = \text{perpendicular} / \text{hypotenuse}$

$$\sin 30^{\circ} = AE / OA$$

$$[1/2] = AE/OA$$

$$OA = 3 * 2$$

[viii] If $\tan \theta + \cot \theta = 2$, then find the value of $\tan^7 \theta + \cot^7 \theta$.

Solution:

```
\tan \theta + \cot \theta = 2
\Rightarrow \tan \theta + 1 / \tan \theta = 2
\Rightarrow \tan^2 \theta + 1 = 2\tan \theta
\Rightarrow \tan^2 \theta - 2\tan \theta + 1 = 0
\Rightarrow (\tan \theta - 1)^2 = 0
\Rightarrow \tan \theta = 1
\cot \theta = 1 / \tan \theta = 1
\tan^7 \theta + \cot^7 \theta
= (\tan \theta)^7 + (\cot \theta)^7
= (1)^7 + (1)^7
= 1 + 1
= 2
```

[ix] If the ratio of the length of the shadow of a tower and height of the tower is $\sqrt{3}$:1, find the angle of elevation of the sun.

Solution:

The ratio of the height of a tower and the length of its shadow is given by $\sqrt{3}$:1.

```
\tan\theta = Height of tower / Length of shadow \tan\theta = \sqrt{3} \ / \ 1 \tan\theta = \tan 60^{\circ} \theta = 60^{\circ}
```

Hence, the angle of the elevation of the sun is 60° .

[x] The volumes of two right circular cylinders are the same. The ratio of their height is 1:2. Find the ratio of their radii.

Solution:

The volume of a right circular cylinder with radius r and height h is $V = \pi r^2 h$. It is given that the ratio of the heights of two circular cylinders is 1:2 that is $h_1 / h_2 = 1 / 2$

= 1 / 2

$$V_1 = V_2$$

 $\Rightarrow \pi r_1^2 h_1 = \pi r_2^2 h_2$
 $\Rightarrow r_1^2 / r_2^2 = h_2 / h_1$
 $\Rightarrow r_1^2 / r_2^2 = 1 / [h_1 / h_2]$
 $\Rightarrow r_1^2 / r_2^2 = 1 / (1 / 2)$
 $\Rightarrow (r_1 / r_2)^2 = 2$

Hence, the ratio of their radius is $\sqrt{2}$:1.

[xi] The volume of a solid hemisphere is 144 π cubic cm, then find the diameter of the sphere.

Solution:

 \Rightarrow r₁ / r₂ = $\sqrt{2}$

The volume of the hemisphere = $2\pi r^3 / 3$ $144\pi = 2 * (22 / 7) * r^3 / 3$ $144 * 3 = 2 * r^3$ $216 = r^3$ r = 6cmd = 2 * r = 2 * 6 = 12cm

[xii] The mean of a frequency distribution is 8.1 if $\sum f_i x_i = 132$ + 5K and $\sum f_i = 20$ then what is the value of K?

Mean =
$$\sum f_i x_i / \sum f_i$$

Mean = 8.1
 $\sum f_i x_i = 132 + 5K$
 $\sum f_i = 20$

$$8.1 = (132 + 5k) / 20$$

 $8.1 \times 20 = 132 + 5k$
 $162 = 132 + 5k$
 $162 - 132 = 5k$
 $30 = 5k$
 $k = 6$

Question 5: Answer any one question:

 $[5 \times 1 = 5]$

- (a) Aminur has taken a loan of Rs. 64, 000 from a bank. If the rate of interest is 2.5 paise per rupee per annum, calculate the compound interest payable after 2 years.
- (b) A, B and C start a business with the capital of Rs. 6,000, Rs 8,000 and Rs. 9, 000, respectively. After a few months, A invests Rs 3, 000 more in the business. At the end of the year, they gained Rs 30,000 and C got Rs. 10,800 as a share of profit. When did A invest Rs. 3,000 more?

Solution:

```
[a] P = Rs. 64000
r = 2.5 paise per rupee per annum (given)
= 0.025 rupee per rupee per annum
= 0.025 x 100 rupee per hundred rupee per annum
= 0.025 \times 100 per cent per annum
= 2.5 percent per annum
t = 2 years
C.I. = 64000 [(1 + 2.5 / 100)^2]
= 64000 [(1.025)^{2}]
```

$$= Rs. 67240$$

 $CI = 67240 - 64000 = Rs. 3240$

[b] A invests Rs 3, 000 more in the business.

$$A = 6000 + 3000 = 9000$$

 $= 64000 \times 1.050625$

=67240

```
= 6000 * x + 9000 (12 - x)
=6000x + 108000 - 9000x
= 108000 - 3000x
= 3000 (36 - x)
B invested Rs. 8000
=(8000 * 12)
= Rs. 96000
C invested Rs. 9000
= (9000 * 12)
= Rs. 108000
Ratio of A, B and C together
=3000(36 - x):96000:108000
= (36 - x) : 32 : 36
Gain = Rs. 30000
C = 30000 * [36 / (36 - x) + 32 + 36]
= 30000 * [36 / 104 - x]
30000 * [36 / 104 - x] = 10800
36 / 104 - x = 10800 / 30000
936 - 9x = 900
-9x = -36
x = 4
```

Question 6: Answer any one question:

 $[3 \times 1 = 3]$

(a) Solve:
$$\{[x+4]/[x-4]\}^2 - 5[x+4/x-4] + 6 = 0, (x \neq 4)$$

(b) The digit in the unit's place of a two-digit number is 6 more than that at the ten's place. The product of the digits is 12 less than the number. Find the possible values of the digit in the unit place.

[a]
$$\{[x+4] / [x-4]\}^2 - 5 [x+4/x-4] + 6 = 0$$
,
Take $[x+4/x-4] = a$
 $a^2 - 5a + 6 = 0$
 $a^2 - 3a - 2a + 6 = 0$
 $a (a-3) - 2 (a-3) = 0$

$$(a-3)(a-2)=0$$

$$a = 3, 2$$

$$a = 3$$

$$x + 4 / x - 4 = 3$$

$$x + 4 = 3 (x - 4)$$

$$x + 4 = 3x - 12$$

$$12 + 4 = 3x - x$$

$$16 = 2x$$

$$x = 8$$

$$a = 2$$

$$x + 4 / x - 4 = 2$$

$$x + 4 = 2(x - 4)$$

$$x + 4 = 2x - 8$$

$$8 + 4 = 2x - x$$

$$12 = x$$

[b]
$$x(x+6) = 10x + x + 6 - 12$$

$$x^2 + 6x = 11x - 6$$

$$x^2 - 5x + 6 = 0$$

$$(x-3)(x-2)=0$$

$$x = 3, 2$$

$$3 + 6 = 9$$

$$2 + 6 = 8$$

Question 7: Answer any one question:

 $[3 \times 1 = 3]$

- (a) Find the simplest value of $\sqrt{7}$ ($\sqrt{5} \sqrt{2}$) $\sqrt{5}$ ($\sqrt{7} \sqrt{2}$) + $2\sqrt{2}$ / $\sqrt{5} + \sqrt{7}$.
- (b) If x \propto y and y \propto z, then prove that: $(x^2 + y^2 + z^2) \propto (xy + yz + xz)$

[a]
$$\sqrt{7} (\sqrt{5} - \sqrt{2}) - \sqrt{5} (\sqrt{7} - \sqrt{2}) + 2\sqrt{2} / \sqrt{5} + \sqrt{7}$$

= $\sqrt{35} - \sqrt{14} - \sqrt{35} + \sqrt{10} + [2\sqrt{2} (\sqrt{7} - \sqrt{5}) / (\sqrt{5} + \sqrt{7}) (\sqrt{7} - \sqrt{5})]$

$$= \sqrt{35} - \sqrt{14} - \sqrt{35} + \sqrt{10} + 2\sqrt{2} (\sqrt{7} - \sqrt{5}) / (\sqrt{7})^2 - (\sqrt{5})^2$$

$$= \sqrt{35} - \sqrt{14} - \sqrt{35} + \sqrt{10} + 2\sqrt{2} (\sqrt{7} - \sqrt{5}) / 2$$

$$= \sqrt{35} - \sqrt{14} - \sqrt{35} + \sqrt{10} + \sqrt{14} - \sqrt{10}$$

$$= 0$$

$$[b] \mathbf{x} \propto \mathbf{y}$$

$$\mathbf{x} = \mathbf{k}_1 \mathbf{y}$$

$$\mathbf{y} \propto \mathbf{z}$$

$$\mathbf{y} = \mathbf{k}_2 \mathbf{z}$$

$$\text{Hence, } \mathbf{x} = \mathbf{k}_1 \mathbf{k}_2 \mathbf{z}$$

$$(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2) \propto (\mathbf{x}\mathbf{y} + \mathbf{y}\mathbf{z} + \mathbf{x}\mathbf{z})$$

$$= (\mathbf{k}_1 \mathbf{k}_2 \mathbf{z})^2 + (\mathbf{k}_2 \mathbf{z})^2 + \mathbf{z}^2 / [\mathbf{k}_1 \mathbf{y} * \mathbf{k}_2 \mathbf{z} + \mathbf{k}_2 \mathbf{z} * \mathbf{z} + \mathbf{k}_1 \mathbf{y} * \mathbf{z}]$$

$$= \mathbf{z}^2 (\mathbf{k}_1^2 \mathbf{k}_2^2 + \mathbf{k}_2^2 + 1) / [\mathbf{k}_1 \mathbf{k}_2^2 \mathbf{z}^2 + \mathbf{k}_2 \mathbf{z}^2 + \mathbf{k}_1 \mathbf{k}_2 \mathbf{z}^2]$$

$$= \mathbf{z}^2 (\mathbf{k}_1^2 \mathbf{k}_2^2 + \mathbf{k}_2^2 + 1) / \mathbf{z}^2 [\mathbf{k}_1 \mathbf{k}_2^2 + \mathbf{k}_2 + \mathbf{k}_1 \mathbf{k}_2]$$

$$= (\mathbf{k}_1^2 \mathbf{k}_2^2 + \mathbf{k}_2^2 + 1) / [\mathbf{k}_1 \mathbf{k}_2^2 + \mathbf{k}_2 + \mathbf{k}_1 \mathbf{k}_2]$$

$$= (\mathbf{k}_1^2 \mathbf{k}_2^2 + \mathbf{k}_2^2 + 1) / [\mathbf{k}_1 \mathbf{k}_2^2 + \mathbf{k}_2 + \mathbf{k}_1 \mathbf{k}_2]$$

$$= (\mathbf{k}_1^2 \mathbf{k}_2^2 + \mathbf{k}_2^2 + 1) / [\mathbf{k}_1 \mathbf{k}_2^2 + \mathbf{k}_2 + \mathbf{k}_1 \mathbf{k}_2]$$

$$= (\mathbf{k}_1^2 \mathbf{k}_2^2 + \mathbf{k}_2^2 + 2) \propto (\mathbf{x}\mathbf{y} + \mathbf{y}\mathbf{z} + \mathbf{x}\mathbf{z})$$

Question 8: Answer any one question:

 $[3 \times 1 = 3]$

[a] If
$$[a + b - c] / [a + b] = [b + c - a] / [b + c] = [c + a - b] / [c + a] and $a + b + c \neq 0$ then prove that $a + b = c$.
[b] If x:a, y:b, z:c that show that $(a^2 + b^2 + c^2) (x^2 + y^2 + z^2) = (ax + by + cz)^2$.$$

[a]
$$[a + b - c] / [a + b] = [b + c - a] / [b + c] = [c + a - b] / [c + a]$$
 $[a + b] / [a + b] - [c] / [a + b] = [b + c] / [b + c] - [a] / [b + c] = [c + a] / [c + a] - [b] / [c + a]$
 $1 - [c] / [a + b] = 1 - [a] / [b + c] = 1 - [b] / [c + a]$
 $[c] / [a + b] = [a] / [b + c] = [b] / [c + a]$
 $a + b / c = b + c / a = c + a / b$
 $a + b + c / c = b + c + a / a = c + a + b / b$
 $1 / c = 1 / a = 1 / b$
 $c = a = b \text{ or } a = b = c$

[b] x:a, y:b, z:c

$$x / a = y / b = z / c = k$$
 [Say]
Let $x = ka$, $y = kb$, $z = kc$
LHS = $(a^2 + b^2 + c^2)(x^2 + y^2 + z^2)$
= $(a^2 + b^2 + c^2)(k^2a^2 + k^2b^2 + k^2c^2)$
= $k^2(a^2 + b^2 + c^2)(a^2 + b^2 + c^2)$
= $k^2(a^2 + b^2 + c^2)^2$
RHS = $(ax + by + cz)^2$
= $(a^*ka + b^*kb + c^*kc)^2$
= $(k^2a^2 + k^2b^2 + k^2c^2)^2$
= $k^2(a^2 + b^2 + c^2)^2$

Question 9: Answer any one question:

 $[5 \times 1 = 5]$

- (a) Prove that, if a perpendicular is drawn on the hypotenuse from the right angular point of a right-angled triangle, two triangles so formed on the two sides of the perpendicular are each similar to the original triangle and also similar to each other.
- (b) Prove that the tangent and the radius through the point of contact of a circle are perpendicular to each other.

Solution:

[a]

Given a right angle triangle, right-angled at A.

AD is the perpendicular drawn to the hypotenuse BC from vertex A.

To Prove:

(i) $\triangle BDA \sim \triangle BAC$

(ii) $\triangle ADC \sim \triangle BAC$

(iii) $\triangle BDA \sim AADC$

Proof:

In \triangle BDA and \triangle BAC:

$$\angle ADB = \angle A = 90^{\circ}$$

$$\angle B = \angle B$$
 [common]

Therefore, by using AA similar condition,

 $\triangle BDA \sim \triangle BAC$...(i)

Now, in \triangle ADC and \triangle BAC,

$$\angle ADC = \angle A = 90^{\circ}$$

$$\angle C = \angle C$$
 [common]

Therefore, by using AA similar condition,

 $\triangle ADC \sim \triangle BAC$...(ii)

Comparing (i) and (ii), $\triangle BDA \sim \triangle ADC$.

[b]

Given: A circle C (0, r) and a tangent l at point A.

To prove: 0A \perp 1

Construction: Take a point B, other than A, on the tangent l. Join OB. Suppose OB meets the circle in C.

Proof: We know that, among all line segments joining the point O to a point on l, the perpendicular is shortest to l.

OA = OC (Radius of the same circle)

Now,
$$OB = OC + BC$$
.

 \Rightarrow OB > OA

$$\Rightarrow$$
 OA < OB

B is an arbitrary point on the tangent l. Thus, OA is shorter than any other line segment joining O to any point on l.

Here, $OA \perp 1$.

Question 10: Answer any one question:

 $[3 \times 1 = 3]$

- (a) In triangle ABC, AD is perpendicular on BC and AD² = BD. DC, prove that \angle BAC is a right angle.
- (b) A straight line intersects one of the two concentric circles at the points A and B and another at the points C and D. Prove that AC = BD.

Solution:

[a] Given: In triangle ABC, AD is perpendicular to BC and $AD^2 = BD.DC$

To prove: \angle BAC = 90°

Proof: In right triangles $\triangle ADB$ and $\triangle ADC$, Pythagoras theorem should be applied,

$$AB^2 = AD^2 + BD^2$$
 ----- (1)

$$AC^2 = AD^2 + DC^2$$
 ----- (2)

$$AB^2 + AC^2 = 2AD^2 + BD^2 + DC^2$$

= 2BD . CD + BD² + CD² [
$$\because$$
 given AD² = BD.CD]

$$= (BD + CD)^2 = BC^2$$

Thus in triangle ABC, $AB^2 + AC^2 = BC^2$

Hence triangle ABC is a right triangle right angled at A.

$$\angle BAC = 90^{\circ}$$

[b]

Given: O is the centre and a straight line intersects one of the two concentric circles at the points A and B and other at the points C and D.

To prove AC = BD

Construction: OM is drawn perpendicular to AB

Proof:

CM = DM [perpendicular drawn from the centre of the circle to the chord bisects the chord]

AM - CM = BM - DM

AC = BD

Question 11: Answer any one question:

 $[5 \times 1 = 5]$

- (a) Constant two circles of radii 4 cm and 2 cm and the distance between their centres is 7 cm. Construct a direct common tangent of the circles. (only traces of construction are required).
- (b) Construct a triangle whose two sides are 9 cm and 7 cm and the angle between them is 60°. Construct the incircle of the triangle. (only traces of construction are required).

Solution:

[a]

[b]

Question 12: Answer any two questions:

 $[3 \times 2 = 6]$

- (a) An arc of length 220 cm of a circle makes an angle 60° at the centre. Find the radius of the circle.
- (b) If $\cos^2 \theta \sin^2 \theta = 1/2$, then find the value of $\tan^2 \theta$.
- (c) Find the value of sec 17° / cosec 73° + tan 68° / cot 22° + $\cos^2 44 + \cos^2 46^{\circ}$.

Solution:

[a] Arc length = $\theta / 360 * 2\pi r$

Given that an arc of length 220cm of a circle makes an angle 60° at the centre,

Hence the radius of the circle is 210 cm.

[b]
$$\cos^2 \theta - \sin^2 \theta = 1/2$$

 $[\cos^2 \theta - \sin^2 \theta + 1] / [\cos^2 \theta - \sin^2 \theta - \cos^2 \theta] = [1 + 2] / [1 - 2]$
 $[\cos^2 \theta - \sin^2 \theta + \sin^2 \theta + \cos^2 \theta] / [\cos^2 \theta - \sin^2 \theta - \cos^2 \theta] = 3/-1$
 $2\cos^2 \theta / - 2\sin^2 \theta = 3/-1$
 $\sin^2 \theta / \cos^2 \theta = 1/3$
 $[c] \sec 17^\circ / \csc 73^\circ + \tan 68^\circ / \cot 22^\circ + \cos^2 44 + \cos^2 46^\circ$
 $= [\sec 17^\circ / \csc (90^\circ - 73^\circ)] + [(\tan 90^\circ - 22^\circ) / \cot 22^\circ] + \cos^2 (90^\circ - 44^\circ) + \cos^2 46^\circ$
 $= [\sec 17^\circ / \sec 17^\circ] + [\cot 22^\circ / \cot 22^\circ] + [\sin^2 46^\circ + \cos^2 46^\circ]$
 $= 1 + 1 + 1$
 $= 3$

Question 13: Answer any one question:

 $[5 \times 1 = 5]$

- (a) The length of the shadow of a post becomes 3 meters smaller when the angle of elevation of the Sun increases from 45° to 60°. Find the height of the post.
- (b) A man standing on a railway bridge $5\sqrt{3}$ meters high, observes the engine of a train at an angle of depression 30°. But after 2 seconds, he observes the engine at an angle of depression 45° on the other side of the bridge. Find the speed of the train.

Solution:

[a]

$$\angle$$
 BCA = 45°

$$\angle BDA = 60^{\circ}$$

$$CD = 3m$$

To find BD

In ΔABD,

$$AB / BD = tan 60^{\circ}$$

AB /
$$x = 1 / \sqrt{3}$$

$$AB = x * \sqrt{3}m$$

In ΔABC,

$$AB / BC = \tan 45^{\circ}$$

$$x\sqrt{3} / x + 3 = 1$$

$$x\sqrt{3} = x + 3$$

$$x\sqrt{3} - x = 3$$

$$x(\sqrt{3}-1)=3$$

$$x = 3 / (\sqrt{3} - 1)$$

By rationalising the denominator,

$$x = 3\sqrt{3} + 3/2$$

$$AB = \sqrt{3}(3\sqrt{3} + 3 / 2)$$

$$AB = 9 + 3\sqrt{3} / 2$$

$$=9+5.193/2$$

$$= 7.098$$
m

[b] Height(h) of the bridge = AB = $5\sqrt{3}$ m

The angle of depression from one side = 30° = \angle ACB

The angle of depression from other side = 45° = \angle ADB

Required time (t) = 2 seconds

Speed of the train = ?

Now, from the \triangle ADB,

 $\tan 45^{\circ} = AB / BD$

 $1 = 5\sqrt{3} / BD$

 $BD = 5\sqrt{3}m$

Now, from the $\triangle ACB$,

 $\tan 30^{\circ} = AB / BC$

 $1 / \sqrt{3} = 5\sqrt{3} / BC$

BC = 15m

CD = BC + BD

 $CD = 15 + 5\sqrt{3} \text{ m}$

Therefore, the distance covered by the train in 2 seconds is = $(15 + 5\sqrt{3})$ m

Speed of the train = $(15 + 5\sqrt{3})$ / 2 = 11.83 m / s

Question 14: Answer any TWO questions:

 $[4 \times 2 = 8]$

- (a) Each side of a cube is decreased by 50%. Calculate the ratio of the volumes of the original and changed cube.
- (b) The total surface area of a right circular cylindrical pot without a lid be 200 sq.cm. If the radius of the base is 7 cm find the quantity of water in litres contained in the pot. (1 litre = 1 cubic dm)
- (c) A tank of length 21 dcm, breadth 11 dcm and 6 dcm deep is half-filled with water. If 100 solid iron balls of diameter 21 cm are completely immersed in the tank, then how much dcm of water level is raised?

Solution:

[a] Let length of the cube be x unit $V = (Side)^3$

$$V = (x)^3 \text{ unit}^3$$

Now, when the length of cube is reduced by 50%

New length =
$$x - x * 50 / 100$$

$$= x - [x / 2]$$

$$= (2x - x) / 2$$

$$= x / 2$$
 unit

New volume = $(side)^3$

$$= (x / 8)^3 \text{ unit}^3$$

Ratio = Original cube volume: New cube volume

$$= x^3 / (x^3 / 8)$$

$$= 8 : 1$$

[b]
$$2\pi rh = \pi r^2$$

$$\pi r(2h+r)=2002$$

$$(22 / 7) * 7(2h + 7) = 2002$$

$$2h + 7 = 91$$

$$2h = 84$$

$$h = 42$$

$$V = \pi r^2 h$$

$$= (22 / 7) * 7^2 * (42)$$

$$= 6.468$$

$$=6.468 / 1000$$

$$= 6.468 \text{ dcm}$$

[c] Length =
$$21 \text{ dcm}$$

Breadth =
$$11 \text{ dcm}$$

Water level raised = x dcm

Volume of the tank = $(21 * 11 * x) \text{ cm}^3$

$$d = 21 / 2 cm$$

$$= 21 / 20 d cm$$

100 iron balls immersed in the tank.

=
$$100 * (4/3) * (22/7) * (21/20)^3 dcm^3$$

$$(21 * 11 * x) = 100 * (4/3) * (22/7) * (21/20)^3$$

$$231x = 485.1$$

 $x = 231/485.1$
 $x = 2.1$ dcm

Question 15: Answer any two questions:

 $[4 \times 2 = 8]$

(a) Find the mode from the following frequency distribution table of ages of examinees of an entrance examination:

Age (in years)	16 - 18	18 - 20	20 - 22	22 - 24	24 - 26
Number of examinees	45	75	38	22	20

(b) Find the median of the given data:

Class Interval	1 - 5	6 - 10	11 - 15	16 - 20	21 - 25	26 - 30	31 - 35
Frequen cy	2	3	6	7	5	4	3

(c) From the frequency distribution table given below, draw less than ogive:

Marks obtained	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100
Frequency	4	8	12	6	10

The modal class =
$$18 - 20$$

Mode =
$$Z = L_1 + (F_1 - F_0) / (2F_1 - F_0 - F_2) * i$$

$$= 18 + [75 - 45] / [2 * 75 - 45 - 38] * 2$$

$$= 18 + [30 / 67] * 2$$

= 18.9

[b]

Class Interval	1 - 5	6 - 10	11 - 15	16 - 20	21 - 25	26 - 30	31 - 35
Class Interval	0.5 - 5.5	5.5 - 10.5	10.5 - 15.5	15.5 - 20.5	20.5 - 25.5	25.5 - 30.5	30.5 - 35.5
Frequen cy	2	3	6	7	5	4	3
CF	2	5	11	18	23	27	30

$$n = 30$$

Median =
$$n / 2 = 30 / 2 = 15$$

$$Median class = 15.5 - 20.5$$

Median =
$$m = 1 + [(n/2 - CF)/f] * h$$

$$= 15.5 + [(30/2) - 11]/7] * 5$$

$$= 15.5 + 2.86$$

$$= 18.36$$

[c]

Marks obtained	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100
Frequency	4	8	12	6	10
CF	4	12	24	30	40

