Special Instructions/Useful Data	
N	Set of all natural numbers
Q	Set of all rational numbers
R	Set of all real numbers
P^T	Transpose of the matrix P
\mathbb{R}^n	$\{(x_1, x_2, \dots, x_n)^T \mid x_i \in \mathbb{R}, i = 1, 2, \dots, n\}$
g'	Derivative of a real valued function g
g"	Second derivative of a real valued function g
P(A)	Probability of an event A
i.i.d.	Independently and identically distributed
$N(\mu, \sigma^2)$	Normal distribution with mean μ and variance σ^2
$F_{m,n}$	F distribution with (m, n) degrees of freedom
t_n	Student's t distribution with n degrees of freedom
χ_n^2	Central Chi-squared distribution with n degrees of freedom
Ф(х)	Cumulative distribution function of N(0,1)
A ^C	Complement of a set A
E(X)	Expectation of a random variable X
Var(X)	Variance of a random variable X
Cov(X,Y)	Covariance between random variables X and Y
r!	Factorial of an integer $r > 0$, $0! = 1$
$\Phi(0.25) = 0.5987, \Phi(0.5) = 0.6915, \Phi(0.625) = 0.7341, \Phi(0.71) = 0.7612,$	
$\Phi(1) = 0.8413, \Phi(1.125) = 0.8697, \Phi(1.5) = 0.9332, \Phi(1.64) = 0.95,$	
$\Phi(2) = 0.9772$	

SECTION - A

MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 - Q.10 carry one mark each.

Q.1 The imaginary parts of the eigenvalues of the matrix

$$P = \begin{pmatrix} 3 & 2 & 5 \\ 2 & -3 & 6 \\ 0 & 0 & -3 \end{pmatrix}$$

are

- (A) 0, 0, 0
- (B) 2, -2, 0
- (C) 1,−1,0
- (D) 3, -3, 0

Q.2 Let $u, v \in \mathbb{R}^4$ be such that $u = (1 \ 2 \ 3 \ 5)^T$ and $v = (5 \ 3 \ 2 \ 1)^T$. Then the equation $uv^Tx = v$ has

- (A) infinitely many solutions
- (B) no solution

(C) exactly one solution

(D) exactly two solutions

Q.3 Let
$$u_n=\left(4-\frac{1}{n}\right)^{\frac{(-1)^n}{n}}$$
 , $n\in\mathbb{N}$ and let $l=\lim_{n\to\infty}u_n$.

Which of the following statements is TRUE?

- (A) l = 0 and $\sum_{n=1}^{\infty} u_n$ is convergent
- (B) $l = \frac{1}{4}$ and $\sum_{n=1}^{\infty} u_n$ is divergent
- (C) $l = \frac{1}{4}$ and $\{u_n\}_{n\geq 1}$ is oscillatory
- (D) l = 1 and $\sum_{n=1}^{\infty} u_n$ is divergent

Q.4 Let $\{a_n\}_{n\geq 1}$ be a sequence defined as follows:

$$a_1 = 1$$
 and $a_{n+1} = \frac{7a_n+11}{21}$, $n \in \mathbb{N}$.

Which of the following statements is TRUE?

- (A) {a_n}_{n≥1} is an increasing sequence which diverges
- (B) $\{a_n\}_{n\geq 1}$ is an increasing sequence with $\lim_{n\to\infty} a_n = \frac{11}{14}$
- (C) {a_n}_{n≥1} is a decreasing sequence which diverges
- (D) $\{a_n\}_{n\geq 1}$ is a decreasing sequence with $\lim_{n\to\infty} a_n = \frac{11}{14}$

Q.5 Let X be a continuous random variable with the probability density function

$$f(x) = \begin{cases} 0, & \text{if } x \le 0 \\ x^3, & \text{if } 0 < x \le 1 \\ \frac{3}{x^5}, & \text{if } x > 1 \end{cases}.$$

Then $P\left(\frac{1}{2} < X < 2\right)$ equals

- $(A)^{\frac{15}{16}}$
- (B) $\frac{11}{16}$
- (C) $\frac{7}{12}$
- (D) $\frac{3}{9}$

Q.6 Let X be a random variable with the moment generating function

$$M_X(t) = \frac{1}{216} (5 + e^t)^3, t \in \mathbb{R}.$$

Then P(X > 1) equals

- $(A)^{\frac{2}{27}}$
- (B) $\frac{1}{27}$
- (C) $\frac{1}{12}$
- (D) $\frac{2}{9}$

Q.7 Let X be a discrete random variable with the probability mass function

$$p(x) = k(1 + |x|)^2$$
, $x = -2, -1, 0, 1, 2$,

where k is a real constant. Then P(X = 0) equals

- $(A)^{\frac{1}{9}}$
- (B) $\frac{2}{27}$
- (C) $\frac{1}{27}$
- (D) $\frac{1}{81}$

Q.8 Let the random variable X have uniform distribution on the interval $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$. Then $P(\cos X > \sin X)$ is

- (A) $\frac{2}{3}$
- (B) $\frac{1}{2}$
- (C) $\frac{1}{2}$
- (D) $\frac{1}{4}$

Q.9 Let $\{X_n\}_{n\geq 1}$ be a sequence of i.i.d. random variables having common probability density function

$$f(x) = \begin{cases} xe^{-x}, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}.$$

Let $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$, $n=1,2,\dots$. Then $\lim_{n\to\infty}P(\bar{X}_n=2)$ equals

- (A) 0
- (B) $\frac{1}{4}$
- (C) $\frac{1}{2}$
- (D) 1

Q.10 Let X_1, X_2, X_3 be a random sample from a distribution with the probability density function

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}, \quad \theta > 0.$$

Which of the following estimators of θ has the smallest variance for all $\theta > 0$?

(A) $\frac{X_1+3X_2+X_3}{5}$ (C) $\frac{X_1+X_2+X_3}{3}$

(B) $\frac{X_1 + X_2 + 2X_3}{4}$ (D) $\frac{X_1 + 2X_2 + 3X_3}{6}$

Q. 11 - Q. 30 carry two marks each.

Player P_1 tosses 4 fair coins and player P_2 tosses a fair die independently of P_1 . The probability that the number of heads observed is more than the number on the upper face of the die, equals

- (A) $\frac{7}{16}$
- (B) $\frac{5}{22}$
- (C) $\frac{17}{96}$
- (D) $\frac{21}{64}$

Q.12 Let X_1 and X_2 be i.i.d. continuous random variables with the probability density function

$$f(x) = \begin{cases} 6x(1-x), & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

Using Chebyshev's inequality, the lower bound of $P(|X_1 + X_2 - 1| \le \frac{1}{2})$ is

- $(A)^{\frac{5}{6}}$
- $(B)^{\frac{4}{\epsilon}}$
- (C) $\frac{3}{5}$

Q.13 Let X_1, X_2, X_3 be i.i.d. discrete random variables with the probability mass function

$$p(k) = \left(\frac{2}{3}\right)^{k-1} \left(\frac{1}{3}\right), \quad k = 1, 2, 3, ...$$

Let $Y = X_1 + X_2 + X_3$. Then $P(Y \ge 5)$ equals

- $(A)^{\frac{1}{9}}$
- (B) $\frac{8}{9}$ (C) $\frac{2}{27}$
- (D) $\frac{25}{27}$

O.14 Let X and Y be continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} cx(1-x), & \text{if } 0 < x < y < 1 \\ 0, & \text{otherwise} \end{cases},$$

where c is a positive real constant. Then E(X) equals

- $(A)^{\frac{1}{6}}$
- (B) $\frac{1}{4}$
- (C) $\frac{2}{5}$
- (D) $\frac{1}{2}$

Let X and Y be continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} x+y, & \text{if } 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}.$$

Then $P\left(X+Y>\frac{1}{2}\right)$ equals

- $(A)^{\frac{23}{24}}$
- (B) $\frac{1}{12}$ (C) $\frac{11}{12}$
- (D) $\frac{1}{24}$

Q.16 Let $X_1, X_2, \dots, X_m, Y_1, Y_2, \dots, Y_n$ be i.i.d. N(0, 1) random variables. Then

$$W = \frac{n(\sum_{i=1}^{m} X_i)^2}{m(\sum_{j=1}^{n} Y_j^2)}$$

has

(A) χ_{m+n}^2 distribution

(B) t_n distribution

(C) $F_{m,n}$ distribution

(D) $F_{1,n}$ distribution

Q.17 Let $\{X_n\}_{n\geq 1}$ be a sequence of i.i.d. random variables with the probability mass function

$$f(x) = \begin{cases} \frac{1}{4}, & \text{if } x = 4\\ \frac{3}{4}, & \text{if } x = 8\\ 0, & \text{otherwise} \end{cases}$$

Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $n = 1, 2, \dots$. If $\lim_{n \to \infty} P(m \le \bar{X}_n \le M) = 1$, then possible values of m and

(A) m = 2.1, M = 3.1

(B) m = 3.2, M = 4.1

(C) m = 4.2, M = 5.7

(D) m = 6.1, M = 7.1

Q.18 Let $x_1 = 1.1$, $x_2 = 0.5$, $x_3 = 1.4$, $x_4 = 1.2$ be the observed values of a random sample of size four from a distribution with the probability density function

$$f(x|\theta) = \begin{cases} e^{\theta - x}, & \text{if } x \ge \theta \\ 0, & \text{otherwise} \end{cases}, \quad \theta \in (-\infty, \infty).$$

Then the maximum likelihood estimate of θ^2 is

- (A) 0.5
- (B) 0.25
- (C) 1.21
- (D) 1.44

Let $x_1 = 2$, $x_2 = 1$, $x_3 = \sqrt{5}$, $x_4 = \sqrt{2}$ be the observed values of a random sample of size four Q.19 from a distribution with the probability density function

$$f(x|\theta) = \begin{cases} \frac{1}{2\theta}, & \text{if } -\theta \le x \le \theta \\ 0, & \text{otherwise} \end{cases}, \quad \theta > 0.$$

Then the method of moments estimate of θ is

- (A) 1
- (B)2
- (C) 3
- (D) 4

Q.20 Let X_1 , X_2 be a random sample from an $N(0, \theta)$ distribution, where $\theta > 0$. Then the value of k, for which the interval $\left(0, \frac{x_1^2 + x_2^2}{k}\right)$ is a 95% confidence interval for θ , equals

- (A) $-\log_e(0.95)$ (B) $-2\log_e(0.95)$ (C) $-\frac{1}{2}\log_e(0.95)$ (D) 2

Let X_1 , X_2 , X_3 , X_4 be a random sample from $N(\theta_1, \sigma^2)$ distribution and Y_1 , Y_2 , Y_3 , Y_4 be a random sample from $N(\theta_2, \sigma^2)$ distribution, where $\theta_1, \theta_2 \in (-\infty, \infty)$ and $\sigma > 0$. Further suppose that the two random samples are independent. For testing the null hypothesis H_0 : $\theta_1 = \theta_2$ against the alternative hypothesis $H_1: \theta_1 > \theta_2$, suppose that a test ψ rejects H_0 if and only if $\sum_{i=1}^4 X_i > \sum_{j=1}^4 Y_j$. The power of the test ψ at $\theta_1 = 1 + \sqrt{2}$, $\theta_2 = 1$ and $\sigma^2 = 4$ is

- (A) 0.5987
- (B) 0.7341
- (C) 0.7612
- (D) 0.8413

Let X be a random variable having a probability density function $f \in \{f_0, f_1\}$, where

$$f_0(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

and

$$f_1(x) = \begin{cases} \frac{1}{2}, & \text{if } 0 \le x \le 2\\ 0, & \text{otherwise} \end{cases}.$$

For testing the null hypothesis H_0 : $f \equiv f_0$ against H_1 : $f \equiv f_1$, based on a single observation on X, the power of the most powerful test of size $\alpha = 0.05$ equals

- (A) 0.425
- (B) 0.525
- (C) 0.625
- (D) 0.725

Q.23 If

$$\int_{y=0}^{1} \int_{x=y}^{2-\sqrt{1-(y-1)^2}} f(x,y) dx dy$$

$$= \int_{x=0}^{1} \int_{y=0}^{\alpha(x)} f(x,y) dy dx + \int_{x=1}^{2} \int_{y=0}^{\beta(x)} f(x,y) dy dx,$$

then $\alpha(x)$ and $\beta(x)$ are

(A)
$$\alpha(x) = x$$
, $\beta(x) = 1 + \sqrt{1 - (x - 2)^2}$

(A)
$$\alpha(x) = x$$
, $\beta(x) = 1 + \sqrt{1 - (x - 2)^2}$ (B) $\alpha(x) = x$, $\beta(x) = 1 - \sqrt{1 - (x - 2)^2}$

(C)
$$\alpha(x) = 1 + \sqrt{1 - (x - 2)^2}$$
, $\beta(x) = x$ (D) $\alpha(x) = 1 - \sqrt{1 - (x - 2)^2}$, $\beta(x) = x$

(D)
$$\alpha(x) = 1 - \sqrt{1 - (x - 2)^2}, \ \beta(x) = 1$$

Q.24 Let $f: [0,1] \to \mathbb{R}$ be a function defined as

$$f(t) = \begin{cases} t^3 \left(1 + \frac{1}{5} \cos(\log_e t^4) \right) & \text{if } t \in (0,1] \\ 0 & \text{if } t = 0 \end{cases}.$$

Let $F: [0,1] \to \mathbb{R}$ be defined as

$$F(x) = \int_0^x f(t)dt.$$

Then F''(0) equals

- (A) 0
- (B) $\frac{3}{5}$
- (C) $-\frac{5}{3}$ (D) $\frac{1}{5}$

Consider the function 0.25

$$f(x,y) = x^3 - y^3 - 3x^2 + 3y^2 + 7, x, y \in \mathbb{R}.$$

Then the local minimum (m) and the local maximum (M) of f are given by

(A) m = 3, M = 7

(B) m = 4, M = 11

(C) m = 7, M = 11

(D) m = 3, M = 11

Q.26 For $c \in \mathbb{R}$, let the sequence $\{u_n\}_{n\geq 1}$ be defined by

$$u_n = \frac{\left(1 + \frac{c}{n}\right)^{n^2}}{\left(3 - \frac{1}{n}\right)^n} .$$

Then the values of c for which the series $\sum_{n=1}^{\infty} u_n$ converges are

(A) $\log_e 6 < c < \log_e 9$

(B) $c < \log_e 3$

(C) $\log_e 9 < c < \log_e 12$

(D) $\log_e 3 < c < \log_e 6$

If for a suitable $\alpha > 0$, Q.27

$$\lim_{x\to 0} \left(\frac{1}{e^{2x}-1} - \frac{1}{\alpha x} \right)$$

exists and is equal to $l (|l| < \infty)$, then

(A) $\alpha = 2$, l = 2

(B) $\alpha = 2$, $l = -\frac{1}{2}$

(C) $\alpha = \frac{1}{2}, l = -2$

(D) $\alpha = \frac{1}{2}, l = \frac{1}{2}$

Q.28 Let

$$P = \int_0^1 \frac{dx}{\sqrt{8 - x^2 - x^3}}.$$

Which of the following statements is TRUE?

- $\begin{array}{ll} \text{(A)} & \sin^{-1}\left(\frac{1}{2\sqrt{2}}\right) < P < \frac{1}{\sqrt{2}}\sin^{-1}\left(\frac{1}{2}\right) \\ \text{(C)} & \frac{1}{\sqrt{2}}\sin^{-1}\left(\frac{1}{2\sqrt{2}}\right) < P < \sin^{-1}\left(\frac{1}{2}\right) \\ \text{(D)} & \sin^{-1}\left(\frac{1}{2}\right) < P < \frac{\sqrt{3}}{2}\sin^{-1}\left(\frac{1}{2}\right) \\ \text{(D)} & \sin^{-1}\left(\frac{1}{2}\right) < P < \frac{\sqrt{3}}{2}\sin^{-1}\left(\frac{1}{2}\right) \\ \end{array}$
- Let Q, A, B be matrices of order $n \times n$ with real entries such that Q is orthogonal and A is invertible. 0.29 Then the eigenvalues of $Q^T A^{-1} B Q$ are always the same as those of
 - (A) AB
- (B) $Q^T A^{-1} B$ (C) $A^{-1} B Q^T$ (D) $B A^{-1}$
- 0.30 Let (x(t), y(t)), $1 \le t \le \pi$, be the curve defined by

$$x(t) = \int_1^t \frac{\cos z}{z^2} dz \quad \text{and} \quad y(t) = \int_1^t \frac{\sin z}{z^2} dz .$$

Let L be the length of the arc of this curve from the origin to the point P on the curve at which the tangent is perpendicular to the x-axis. Then L equals

- $(A)\sqrt{2}$
- $(B)\frac{\pi}{\sqrt{2}}$
- (C) $1 \frac{2}{\pi}$ (D) $\frac{\pi}{2} + \sqrt{2}$

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

- Q. 31 Q. 40 carry two marks each.
- Q.31 Let $v \in \mathbb{R}^k$ with $v^T v \neq 0$. Let

$$P = I - 2\frac{vv^T}{v^Tv},$$

where I is the $k \times k$ identity matrix. Then which of the following statements is (are) TRUE?

(A) $P^{-1} = I - P$

(B) −1 and 1 are eigenvalues of P

(C) $P^{-1} = P$

(D) (I + P)v = v

- Q.32 Let $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ be sequences of real numbers such that $\{a_n\}_{n\geq 1}$ is increasing and $\{b_n\}_{n\geq 1}$ is decreasing. Under which of the following conditions, the sequence $\{a_n + b_n\}_{n\geq 1}$ is always convergent?
 - (A) $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ are bounded sequences
 - (B) $\{a_n\}_{n\geq 1}$ is bounded above
 - (C) $\{a_n\}_{n\geq 1}$ is bounded above and $\{b_n\}_{n\geq 1}$ is bounded below
 - (D) $a_n \to \infty$ and $b_n \to -\infty$
- Q.33 Let $f: [0,1] \rightarrow [0,1]$ be defined as follows:

$$f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Q} \cap [0,1] \\ x + \frac{2}{3}, & \text{if } x \in \mathbb{Q}^c \cap \left(0, \frac{1}{3}\right) \\ x - \frac{1}{3}, & \text{if } x \in \mathbb{Q}^c \cap \left(\frac{1}{3}, 1\right) \end{cases}.$$

Which of the following statements is (are) TRUE?

- (A) f is one-one and onto
- (B) f is not one-one but onto
- (C) f is continuous on $\mathbb{Q} \cap [0,1]$
- (D) f is discontinuous everywhere on [0,1]
- Q.34 Let f(x) be a nonnegative differentiable function on $[a, b] \subset \mathbb{R}$ such that f(a) = 0 = f(b) and $|f'(x)| \le 4$. Let L_1 and L_2 be the straight lines given by the equations y = 4(x a) and y = -4(x b), respectively. Then which of the following statements is (are) TRUE?
 - (A) The curve y = f(x) will always lie below the lines L_1 and L_2
 - (B) The curve y = f(x) will always lie above the lines L_1 and L_2
 - (C) $\left| \int_a^b f(x) dx \right| < (b-a)^2$
 - (D) The point of intersection of the lines L_1 and L_2 lie on the curve y = f(x)
- Q.35 Let E and F be two events with 0 < P(E) < 1, 0 < P(F) < 1 and $P(E) + P(F) \ge 1$. Which of the following statements is (are) TRUE?
 - $(A) P(E^C) \leq P(F)$

(B) $P(E \cup F) < P(E^C \cup F^C)$

(C) $P(E|F^C) \ge P(F^C|E)$

(D) $P(E^C|F) \leq P(F|E^C)$

The cumulative distribution function of a random variable X is given by Q.36

$$F(x) = \begin{cases} 0, & \text{if } x < 0 \\ \frac{4}{9}, & \text{if } 0 \le x < 1 \\ \frac{8}{9}, & \text{if } 1 \le x < 2 \\ 1, & \text{if } x \ge 2 \end{cases}.$$

Which of the following statements is (are) TRUE?

(A) The random variable X takes positive probability only at two points

- (B) $P(1 \le X \le 2) = \frac{5}{6}$
- (C) $E(X) = \frac{2}{3}$
- (D) $P(0 < X < 1) = \frac{4}{9}$

Q.37 Let X_1, X_2 be a random sample from a distribution with the probability mass function

$$f(x|\theta) = \begin{cases} 1 - \theta, & \text{if } x = 0 \\ \theta, & \text{if } x = 1 \\ 0, & \text{otherwise} \end{cases}, \quad 0 < \theta < 1.$$

Which of the following is (are) unbiased estimator(s) of θ ?

- (A) $\frac{X_1 + X_2}{2}$
- (B) $\frac{X_1^2 + X_2}{2}$ (C) $\frac{X_1^2 + X_2^2}{2}$
- (D) $\frac{X_1 + X_2 X_1^2}{2}$

Q.38 Let X_1, X_2, X_3 be a random sample from a distribution with the probability density function

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}, \quad \theta > 0.$$

If $\delta(X_1, X_2, X_3)$ is an unbiased estimator of θ , which of the following CANNOT be attained as a value of the variance of δ at $\theta = 1$?

- (A) 0.1
- (B) 0.2
- (C) 0.3
- (D) 0.5

Q.39 Let $X_1, X_2, ..., X_n$ ($n \ge 2$) be a random sample from a distribution with the probability density

$$f(x|\theta) = \begin{cases} \frac{x}{\theta^2} e^{-x/\theta}, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}, \quad \theta > 0.$$

Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Which of the following statistics is (are) sufficient but NOT complete?

- (A) \bar{X}
- (B) $\bar{X}^2 + 3$ (C) $(X_1, \sum_{i=2}^n X_i)$ (D) (X_1, \bar{X})

Q.40 Let X_1 , X_2 , X_3 , X_4 be a random sample from an $N(\theta, 1)$ distribution, where $\theta \in (-\infty, \infty)$. Suppose the null hypothesis H_0 : $\theta = 1$ is to be tested against the hypothesis H_1 : $\theta < 1$ at $\alpha = 0.05$ level of significance. For what observed values of $\sum_{i=1}^4 X_i$, the uniformly most powerful test would reject H_0 ?

(A) - 1

(B) 0

(C) 0.5

(D) 0.8

SECTION - C

NUMERICAL ANSWER TYPE (NAT)

O. 41 - O. 50 carry one mark each.

- Q.41 Let the random variable X have uniform distribution on the interval (0, 1) and $Y = -2 \log_e X$. Then E(Y) equals _____
- Q.42 If $Y = \log_{10} X$ has $N(\mu, \sigma^2)$ distribution with moment generating function $M_Y(t) = e^{5t+2t^2}$, $t \in (-\infty, \infty)$, then P(X < 1000) equals ______
- Q.43 Let X_1 , X_2 , X_3 , X_4 , X_5 be independent random variables with $X_1 \sim N(200, 8)$, $X_2 \sim N(104, 8)$, $X_3 \sim N(108, 15)$, $X_4 \sim N(120, 15)$ and $X_5 \sim N(210, 15)$. Let $U = \frac{X_1 + X_2}{2}$ and $V = \frac{X_3 + X_4 + X_5}{3}$. Then P(U > V) equals
- Q.44 Let X and Y be discrete random variables with the joint probability mass function

$$p(x,y) = \frac{1}{25}(x^2 + y^2)$$
, if $x = 1,2$; $y = 0,1,2$.

Then P(Y = 1 | X = 1) equals _____

Q.45 Let X and Y be continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} 8xy, & 0 < y < x < 1 \\ 0, & \text{otherwise} \end{cases}.$$

Then 9Cov(X, Y) equals

Q.46 Let X_1 , X_2 , X_3 , Y_1 , Y_2 , Y_3 , Y_4 be i.i.d. $N(\mu, \sigma^2)$ random variables. Let $\bar{X} = \frac{1}{3} \sum_{i=1}^3 X_i$ and $\bar{Y} = \frac{1}{4} \sum_{j=1}^4 Y_j$. If $k \sqrt{\frac{15}{7}} \frac{(\bar{X} - \bar{Y})}{\sqrt{\left\{\sum_{i=1}^3 (X_i - \bar{X})^2 + \sum_{j=1}^4 (Y_j - \bar{Y})^2\right\}}}$ has t_{ν} distribution, then $(\nu - k)$ equals

Q.47 Let $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$ be defined as

$$f(x) = \alpha x + \beta \sin x,$$

where $\alpha, \beta \in \mathbb{R}$. Let f have a local minimum at $x = \frac{\pi}{4}$ with $f\left(\frac{\pi}{4}\right) = \frac{\pi - 4}{4\sqrt{2}}$.

Then $8\sqrt{2} \alpha + 4 \beta$ equals _____

- Q.48 The area bounded between two parabolas $y = x^2 + 4$ and $y = -x^2 + 6$ is _____
- Q.49 For j = 1, 2, ..., 5, let P_j be the matrix of order 5×5 obtained by replacing the j^{th} column of the identity matrix of order 5×5 with the column vector $v = (5 \ 4 \ 3 \ 2 \ 1)^T$. Then the determinant of the matrix product $P_1P_2P_3P_4P_5$ is ______

Q.50 Let

$$u_n = \frac{18n+3}{(3n-1)^2(3n+2)^2}, \quad n \in \mathbb{N}.$$

Then $\sum_{n=1}^{\infty} u_n$ equals _____

- Q. 51 Q. 60 carry two marks each.
- Q.51 Let a unit vector $v = (v_1 \quad v_2 \quad v_3)^T$ be such that Av = 0 where

$$A = \begin{pmatrix} \frac{5}{6} & -\frac{1}{3} & -\frac{1}{6} \\ -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{6} & -\frac{1}{3} & \frac{5}{6} \end{pmatrix}.$$

Then the value of $\sqrt{6}$ ($|v_1| + |v_2| + |v_3|$) equals _____

Q.52 Let

$$F(x) = \int_0^x e^t (t^2 - 3t - 5) dt \ , \qquad x > 0.$$

Then the number of roots of F(x) = 0 in the interval (0,4) is _____

- Q.53 A tangent is drawn on the curve $y = \frac{1}{3}\sqrt{x^3}$, (x > 0) at the point $P\left(1, \frac{1}{3}\right)$ which meets the x-axis at Q. Then the length of the closed curve OQPO, where O is the origin, is
- O.54 The volume of the region

$$R = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \le 3, \ y^2 \le 4x, 0 \le x \le 1, y \ge 0, z \ge 0\}$$

Q.55 Let X be a continuous random variable with the probability density function

$$f(x) = \begin{cases} \frac{x}{8}, & \text{if } 0 < x < 2\\ \frac{k}{8}, & \text{if } 2 \le x \le 4\\ \frac{6-x}{8}, & \text{if } 4 < x < 6\\ 0, & \text{otherwise.} \end{cases}$$

where k is a real constant. Then P(1 < X < 5) equals _____

Q.56 Let X_1 , X_2 , X_3 be independent random variables with the common probability density function

$$f(x) = \begin{cases} 2e^{-2x}, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}.$$

Let $Y = \min \{X_1, X_2, X_3\}$, $E(Y) = \mu_y$ and $Var(Y) = \sigma_y^2$. Then $P(Y > \mu_y + \sigma_y)$ equals

Q.57 Let X and Y be continuous random variables with the joint probability density function

$$f(x,y) = \left\{ \begin{array}{ll} \frac{1}{2} e^{-x}, & \text{if } |y| \leq x \,, \ x > 0 \\ 0, & \text{otherwise} \end{array} \right. \,.$$

Then $E(X \mid Y = -1)$ equals _____

Q.58 Let X and Y be discrete random variables with $P(Y \in \{0,1\}) = 1$,

$$P(X = 0) = \frac{3}{4},$$
 $P(X = 1) = \frac{1}{4},$ $P(Y = 1|X = 1) = \frac{3}{4},$ $P(Y = 0|X = 0) = \frac{7}{8}.$

Then 3P(Y = 1) - P(Y = 0) equals ______

Q.59 Let $X_1, X_2, ..., X_{100}$ be i.i.d. random variables with $E(X_1) = 0$, $E(X_1^2) = \sigma^2$, where $\sigma > 0$. Let $S = \sum_{i=1}^{100} X_i$. If an approximate value of $P(S \le 30)$ is 0.9332, then σ^2 equals

Q.60 Let X be a random variable with the probability density function

$$f(x|r,\lambda) = \frac{\lambda^r}{(r-1)!} \, x^{r-1} e^{-\lambda x}, \quad x>0, \lambda>0, r>0.$$

If E(X) = 2 and Var(X) = 2, then P(X < 1) equals

END OF THE QUESTION PAPER