#### SECTION - A

#### MULTIPLE CHOICE QUESTIONS (MCQ)

## Q. 1 - Q.10 carry one mark each.

- Q.1 The correct order of the boiling points of the compounds is
  - (A)  $CH_4 > SiH_4 > SnH_4 > GeH_4$
  - (B)  $SiH_4 > CH_4 > GeH_4 > SnH_4$
  - (C)  $SnH_4 > GeH_4 > CH_4 > SiH_4$
  - (D)  $SnH_4 > GeH_4 > SiH_4 > CH_4$
- Q.2 In the following Latimer diagram, the species that undergoes disproportionation reaction is

$$MnO_4^{-} \xrightarrow{+0.56} MnO_4^{2-} \xrightarrow{+0.27} MnO_4^{3-} \xrightarrow{+0.93} MnO_2 \xrightarrow{+0.15} Mn_2O_3 \xrightarrow{-0.25} Mn(OH)_2 \xrightarrow{-1.56} Mn$$

- (A)  $MnO_4^{2+}$
- (B) MnO<sub>4</sub>3-
- (C) Mn<sub>2</sub>O<sub>3</sub>
- (D)  $Mn(OH)_2$
- Q.3 A yellow precipitate is formed upon addition of aqueous AgNO3 to a solution of
  - (A) phosphite

(B) pyrophosphate

(C) metaphosphate

- (D) orthophosphate
- Q.4 The compounds having C<sub>3</sub>-axis of symmetry are



- (A) I, III and IV
- (B) I, II and III
- (C) I and III
- (D) III and IV
- Q.5 The correct order of rate of solvolysis for the following compounds is



- (A) ||| > || > |
- (B) |I| > 1 > |I|
- (C) ||| > | > ||
- (D) || > || > 1
- Q.6 In the following sequence of reactions, the overall yield (%) of O is

Q.7 Catalytic hydrogenation of the following compound produces saturated hydrocarbon(s). The number of stereoisomer(s) formed is



- (A) 1
- (B)2
- (C) 3
- (D) 4

Q.8 The number of normal modes of vibration in naphthalene is

- (A) 55
- (B) 54
- (C) 48
- (D) 49

Q.9 The number of degrees of freedom of liquid water in equilibrium with ice is

- (A) 0
- **(B)** 1
- (C) 2
- (D) 3

Q.10 A straight line having a slope of  $-\Delta U^0/R$  is obtained in a plot between

(A)  $lnK_p$  versus T

(B)  $lnK_C$  versus T

(C)  $lnK_p$  versus 1/T

(D)  $lnK_C$  versus 1/T

Q. 11 - Q. 30 carry two marks each.

Q.11 In a typical conductometric titration of a strong acid with a weak base, the curve resembles

(A)



**(B)** 



(C)



(D)



Q.12 The coordination number of Al in crystalline AlCl<sub>3</sub> and liquid AlCl<sub>3</sub>, respectively, is

- (A) 4 and 4
- (B) 6 and 6
- (C) 6 and 4
- (D) 3 and 6

Q.13 The homogeneous catalyst used in water-gas shift reaction is

(A) PdCl<sub>2</sub>

(B) Cr<sub>2</sub>O<sub>3</sub>

(C)  $[RhCl(PPh_3)_3]$ 

(D) [RuCl<sub>2</sub>(bipyridyl)<sub>2</sub>]

Q.14 Nitrosyl ligand binds to d-metal atoms in linear and bent fashion and behaves, respectively, as

- (A) NO+ and NO+
- (B) NO+ and NO-
- (C) NO- and NO-
- (D) NO and NO

Q.15 The metal ion  $(M^{2+})$  in the following reaction is

$$M^{2+} + S^{2-} \longrightarrow Black precipitate \xrightarrow{hot conc. HNO_3} White precipitate$$
(A)  $Mn^{2+}$  (B)  $Fe^{2+}$  (C)  $Cd^{2+}$  (D)  $Cu^{2+}$ 

Q.16 The correct order of wavelength of absorption ( $\lambda_{max}$ ) of the Cr-complexes is (en = ethylenediamine)

- (A)  $[CrF_6]^{3-} > [Cr(H_2O)_6]^{3+} > [Cr(en)_3]^{3+} > [Cr(CN)_6]^{3-}$
- (B)  $[Cr(H_2O)_6]^{3+} > [CrF_6]^{3-} > [Cr(en)_3]^{3+} > [Cr(CN)_6]^{3-}$ (C)  $[Cr(CN)_6]^{3-} > [Cr(en)_3]^{3+} > [Cr(H_2O)_6]^{3+} > [CrF_6]^{3-}$
- (D)  $[Cr(en)_3]^{3+} > [Cr(CN)_6]^{3-} > [Cr(H_2O)_6]^{3+} > [CrF_6]^{3-}$

Q.17 The correct order of enthalpy of hydration for the transition metal ions is

- (A)  $Cr^{2+} > Mn^{2+} > Co^{2+} > Ni^{2+}$
- (B)  $Ni^{2+} > Co^{2+} > Mn^{2+} > Cr^{2+}$
- (C)  $Ni^{2+} > Co^{2+} > Cr^{2+} > Mn^{2+}$
- (D)  $Cr^{2+} > Mn^{2+} > Ni^{2+} > Co^{2+}$

(A) I and IV

0.18Among the following compounds, the pair of enantiomers is



Q.19 The number of proton NMR signals for the compounds P and Q, respectively, is



CY

# Q.20 The correct set of reagents for the following conversion is

- (A) (i) NaNH2/liq.NH3; (ii) NaNO2/dil. HCl; (iii) CuCN, heat
- (B) (i)  $HNO_3/H_2SO_4$ ; (ii) Zn/HCl; (iii) )  $NaNO_2/dil$ . HCl; (iv) CuCN, heat
- (C) (i) Mg/ether, H<sub>3</sub>O+; (ii) (EtO)<sub>2</sub>CO; (iii) NH<sub>4</sub>OH; (iv) PCl<sub>5</sub>
- (D) (i) Mg/ether, H<sub>3</sub>O+; (ii) HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub>; (iii) NaNO<sub>2</sub>/dil. HCl; (iv) CuCN, heat

## Q.21 The product R in the following reaction is

#### Q.22 The major product S of the following reaction is

(A) 
$$\frac{\text{(ii) } H_2SO_4; H_2O, heat}{\text{(iii) } Br_2/FeBr_3} S$$
(A) 
$$Br$$
(B) 
$$Ar$$
(C) 
$$Br$$
(D) 
$$Br$$

$$Br$$

$$Br$$

$$Br$$

$$Br$$

$$Br$$

$$Br$$

(i) NH<sub>2</sub>OH+HCI

Т

#### Q.23 In the following reaction, the major product T is

(i) NaOMe

(ii) H<sub>3</sub>O<sup>+</sup>, reflux

#### Q.24 The following conversion is carried out using

- (A) hydroboration-oxidation followed by Jones oxidation
- (B) Wacker oxidation followed by haloform reaction
- (C) oxymercuration-demercuration followed by Jones oxidation
- (D) ozonolysis followed by haloform reaction

#### Q.25 In the following reactions, the major products E and F, respectively, are

(i) NaOH/CO<sub>2</sub>

Q.26  $\frac{dy}{dx} = -\frac{y}{x}$  is a differential equation for a/an

(A) circle

(B) ellipse

(C) bell-shaped curve

(D) hyperbola

Q.27 Value of the given determinant is

1 3 0 2 6 4 -1 0 2

- (A) 12
- (B) 0
- (C) 6
- (D) 12

Q.28 lonisation energy of hydrogen atom in ground state is 13.6 eV. The energy released (in eV) for third member of Balmer series is

- (A) 13.056
- (B) 2.856
- (C) 0.967
- (D) 0.306

Q.29 For a first order reaction  $A(g) \to 2B(g) + C(g)$ , the rate constant in terms of initial pressure  $(p_0)$ and pressure at time  $t(p_t)$ , is given by

- (A)  $\frac{1}{t} ln \frac{p_0}{p_t p_0}$  (B)  $\frac{1}{t} ln \frac{2p_0}{3p_0 p_t}$  (C)  $\frac{1}{t} ln \frac{3p_0}{p_t p_0}$  (D)  $\frac{1}{t} ln \frac{3p_0}{3p_t p_0}$

For a particle in one-dimensional box of length L with potential energy V(x) = 0 for L > x > 0 and  $V(x) = \infty$  for  $x \ge L$  and  $x \le 0$ , an acceptable wave function consistent with the boundary conditions is (A, B, C and D are constants)

- (A)  $A\cos\left(\frac{n\pi x}{L}\right)$  (B)  $B(x+x^2)$  (C)  $Cx^3(x-L)$
- (D)  $\frac{D}{\sin(\frac{n\pi x}{L})}$

# **SECTION - B**

#### MULTIPLE SELECT QUESTIONS (MSQ)

Q. 31 - Q. 40 carry two marks each.

- Q.31 The "heme" containing protein(s) is/are
  - (A) cytochrome C
- (B) hemocyanin
- (C) hemerythrin
- (D) myoglobin

Q.32 Among the following, the species having see-saw shape is/are

- $(A) SF_4$
- (B) XeF<sub>4</sub>
- (C) CIF<sub>4</sub><sup>+</sup>
- (D) ClF<sub>4</sub><sup>-</sup>

Q.33 The indicator(s) appropriate for the determination of end point in the titration of a weak acid with a strong base is/are

(A) phenolphthalein

(B) thymol blue

(C) bromophenol blue

(D) methyl orange

- Q.34 Jahn-Teller distortion is observed in octahedral complexes with d-electron configuration of
  - (A) d5- high spin
- (B) d5- low spin
- (C) d<sup>6</sup>- high spin
- (D) d<sup>6</sup>- low spin
- Q.35 Among the following, the correct statement(s) is/are
  - (A) Guanine is a purine nucleobase
  - (B) Glycine and proline are achiral amino acids
  - (C) DNA contains glycosidic bonds and pentose sugars
  - (D) Sucrose is a non-reducing sugar
- Q.36 The INCORRECT statement(s) among the following is/are
  - (A)  $[4\pi + 2\pi]$  cycloaddition reactions are carried out in presence of light
  - (B)  $[2\pi + 2\pi]$  cycloaddition reaction between a keto group and an alkene is photochemically allowed
  - (C)  $[4\pi + 2\pi]$  cycloaddition reactions are thermally allowed
  - (D) Transoid dienes undergo Diels-Alder reactions
- Q.37 The following conversion is an example of

- (A) oxy-Cope rearrangement
- (B) sigmatropic rearrangement

(C) Claisen rearrangement

(D) pericyclic reaction

- Q.38 IR active molecule(s) is/are
  - $(A) CO_2$

(B) CS<sub>2</sub>

(C) OCS

(D) N<sub>2</sub>

- Q.39 Intensive variable(s) is/are
  - (A) temperature

(B) volume

(C) pressure

- (D) density
- Q.40 Wave nature of electromagnetic radiation is observed in
  - (A) diffraction

(B) interference

(C) photoelectric effect

(D) Compton scattering

# SECTION – C NUMERICAL ANSWER TYPE (NAT)

# Q. 41 - Q. 50 carry one mark each.

- Q.41 The number of isomeric structures of di-substituted borazine (B<sub>3</sub>N<sub>3</sub>H<sub>4</sub>X<sub>2</sub>) is
- Q.42 The number of S-S bond(s) in tetrathionate ion is
- Q.43 The number of unpaired electron(s) in K<sub>2</sub>NiF<sub>6</sub> is \_\_\_\_\_
- Q.44 The number of reducing sugars among the following is

- Q.45 The maximum number of dipeptides that could be obtained by reaction of phenylalanine with leucine is
- Q.46 Among the following, the number of aromatic compound(s) is \_\_\_\_\_

Q.47 At an operating frequency of 350 MHz, the shift (in Hz) of resonance from TMS (tetramethylsilane) of a proton with chemical shift of 2 ppm is \_\_\_\_\_

| Q.48 | At 298 K and 1 atm, the molar enthalpies of combustion of cyclopropane and propene are                                           |
|------|----------------------------------------------------------------------------------------------------------------------------------|
|      | -2091 kJ mol <sup>-1</sup> and -2058 kJ mol <sup>-1</sup> , respectively. The enthalpy change (in kJ mol <sup>-1</sup> ) for the |
|      | conversion of one mole of propene to one mole of cyclopropane is                                                                 |

| Q.49 | For a cell reaction, $Pb(s) + Hg_2Cl_2(s) \rightarrow PbCl_2(s) + 2Hg(l)$ , $\left(\frac{\partial E^0}{\partial T}\right)_p$ is $1.45 \times 10^{-4}$ VK <sup>-1</sup> . The |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | entropy change (in J mol <sup>-1</sup> K <sup>-1</sup> ) for the reaction is                                                                                                 |

[Given: 1 F =  $96500 \text{ C mol}^{-1}$ ]

Q.50 For a reaction  $2A + B \rightarrow C + D$ , if rate of consumption of A is 0.1 mol L<sup>-1</sup>s<sup>-1</sup>, the rate of production of C (in mol L<sup>-1</sup>s<sup>-1</sup>) is \_\_\_\_\_

# Q. 51 - Q. 60 carry two marks each.

Q.51 The standard reduction potentials of  $Ce^{4+}/Ce^{3+}$  and  $Fe^{3+}/Fe^{2+}$  are 1.44 and 0.77 V, respectively. The  $log_{10}K$  (K is the equilibrium constant) value for the following reaction is \_\_\_\_\_ (final answer should be rounded off to two decimal places)

$$Ce^{4+} + Fe^{2+}$$
  $Ce^{3+} + Fe^{3+}$ 

[Given: RT/F = 0.0257 V]

- Q.52 A radioactive element undergoes 80% radioactive decay in 300 min. The half-life for this species in minutes is \_\_\_\_\_
- Q.53 Silver crystallizes in a face-centered cubic lattice. The lattice parameter of silver (in picometer) is

[Given: Avogadro's number =  $6.023 \times 10^{23}$  mol<sup>-1</sup>, molar mass of silver = 107.87 g mol<sup>-1</sup> and density of crystal = 10.5 g cm<sup>-3</sup>]

- Q.54 The amount of bromine (atomic wt.= 80) required (in gram) for the estimation of 42.3 g of phenol (molecular wt. = 94 g mol<sup>-1</sup>) is \_\_\_\_\_\_
- Q.55 The total number of pair of enantiomers possible with molecular formula C<sub>5</sub>H<sub>12</sub>O is \_\_\_\_\_

| Q.56 | In 200 g of water, 0.01 mole of NaCl and 0.02 mole of sucrose are dissolved. Assuming solution to be ideal, the depression in freezing point of water (in *C) will be (final answer should be rounded off to two decimal places)                                                                                                                                                                                        |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | [Given: $K_f(H_2O) = 1.86 \text{ K kg mol}^{-1}$ ]                                                                                                                                                                                                                                                                                                                                                                      |
| Q.57 | The adsorption of a gas follows the Langmuir isotherm with $K = 1.25 \text{ kPa}^{-1}$ at 25 °C. The pressure (in Pa) at which surface coverage is 0.2 is                                                                                                                                                                                                                                                               |
| Q.58 | The separation of 123 planes (in nm) in an orthorhombic cell with $a = 0.25$ nm, $b = 0.5$ nm and $c = 0.75$ nm is (final answer should be rounded off to two decimal places)                                                                                                                                                                                                                                           |
| Q.59 | A vessel contains a mixture of $H_2$ and $N_2$ gas. The density of this gas mixture is 0.2 g L <sup>-1</sup> at 300 K and 1 atm. Assuming that both the gases behave ideally, the mole fraction of $N_2$ (g) in the vessel is (final answer should be rounded off to two decimal places)  [Given: $R = 0.082$ L atm mol <sup>-1</sup> K <sup>-1</sup> , atomic wt. of hydrogen = 1.0 and atomic wt. of nitrogen = 14.0] |
| Q.60 | Consider an isothermal reversible compression of one mole of an ideal gas in which the pressure of the system is increased from 5 atm to 30 atm at 300 K. The entropy change of the surroundings (in J K <sup>-1</sup> ) is (final answer should be rounded off to two decimal places)                                                                                                                                  |
|      | [Given: $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ ]                                                                                                                                                                                                                                                                                                                                                                 |

# END OF THE QUESTION PAPER

CY 11/11